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Abstract

Dispersion of a wide-bandwidth radar signal
by a static atmospherc is considered. Using ex-
perimental data to fit the attenuation (in db/km) due
to molecular resonances, the index of refraction may
be inferred. The dispersive delay due to two-way
propagation through the atmosphere is then compared
to the dispersion one would normally design for a
pulse compression receiver. Cornparison indicates
that atmospheric dispersion is quite small unless the
center frequency is near the lowest water vapor

resonance at = 1.35 cm.
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Introduction

The dispersive properties of the atmosphere have been widely studied
in ae past. By the simple requirement of causality, Kramers and Kronig
showed that the real and imaginary parts of the complex dielectric constant
are Hilbert transforms of each other. Using these relations, Van Vleckl
showed that a very small change in the real part of the dielectric constant
over the microwave region will automatically imply a serious attenuation of
microwaves. In fact, he showed that a change of one part in 107 between
XA =% and A = 1 cm implies at least , 5 db/km attenuation for all wavelengths
shorter than about 2 cm. He comments, '"Thus, we can safely conclude that
for all frequencies in the microwave regiocn, the static value of the dielectric
constant can be used without appreciable error."

It is, in fact, the purpose of this paper to investigate the effects of
such a small dielectric gradient (with respect to frequency) on a wide band-
width signal which propagates through a static atmosphere. At the outset, it
will be well to realize that we shall only obtain an estimate of such effects.
Basically, this is due to the fact that it is very difficult to obtain accurate
theoretical or experimental values of the complex dielectric constant except
near a microwave resonance of atmospheric constituents such as molecular
oxygen and water vapor.

In Section I we briefly review the description of waves propagating in
an homogeneous, isotropic medium of complex dielectric constant. In
Section II the transmitted radar waveform is introduced by means of spectral
weighting. The effects of scattering are mentioned and a discussion of the
radar receiver enables us to define the dispersive time delay of a pulse com-
pression system. This delay function of frequency enables one to make a
comparison with the dispersion introduced by propagation through the atmos-

phere.

1. For a general reference for material contained in this paper, see
Propagation of Short Radio Waves, M.I.T. Rad. Lab. Series No. 13, Ch. 8,
McGraw-Hill (1951).




In Section IIi, the dispersion and attenuation of the atmosphere is
assumed to be a small effect near the radar center frequency, fo . Appro-
priate expansions of the dielectric constant about fo , and exponential scaling
with altitude allows one to define the dispersion and attenuation constants in
terms of which one may calculate these effects. In Section IV we use the
general resonance formulae given by Van Vleckl and the experimental and
theoretical data to determine the dispersion and attenuation constants. Finally,
the dispersive delay is compared to that which one would normally implement
for a linear frequencyymodulated (fm) signal, and it is shown that atmospheric
dispersion of an X-band signal of duration .i-usec and 1-GC bandwidth is
negligible. In fact, dispersion of a short-duration, wide-bandwidth signal by
the atmosphere is unimportant for frequencies sufficiently below the first

water vapor resonance.

1. Plane Waves in a Medium of Complex Dielectric Constant

Although the description of a plane wave propagating in an homogeneous
isotropic medium of complex dielectric constant is well known, we include a

few of the basic equations. The wave equation for a one-dimensional harmonic
field is

(9% + ek?) E(M=0 , (1. 1)
where k = w/c ; w is the radian frequency, c is the velocity light, and ¢

is the complex dielectric constant at the frequency f = w/2n. The solutions

of this equation are

E (f)=E edntivk-r (1.2)
w o
where | K | =k and K - Eo =0 . The constants n and Y are determined by
(n+iy)2=e + ie (1.3)
! 2 ’

where € and €, are the real and imaginary parts of the dielectric constant,

respectively. Solving for n and Y, we find (choosing the least attenuated
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solutions)

o]
0]

| 2 2
Tle, /e P ee,n (1.4)

and

Y2=é—[-€1+ e12+e2] : (1.5)

If we expand these solutions, assuming ez/e1 << 1 (in practice this is quite

valid), we find
n = 4/61 ) (1.6)

and

1
Y“'-Zez . (1.7)

This finally yields the solution which propagates with the least attenuation,

- - - . —o. — " l — L d
Ewr,t)=Eoe‘(V€1 ker-ut) -gepk-r (1.8)
1I. Radar Transmission and Reception

Suppose we choose our radar coordinate system such that K is along
the x-axis; then
. 1
- el(«/é:l kx - (Dt)e" -2- €2 kx

G0t = E

tad

(2.1)

In practice, of course, we shall transmit a wave train of some finite duration.
This wave train is then simply represented by

©

E{x,t) = [ dwSw) E (x,t) |, (2.2)

where S(w) indicates the spectral content of the wave. We now assume that
this wave travels out from the radar a distance { and is reflected by a
stationary point scatterer (independent of polarization and frequency). The

scattered field at the radar is then



. A f . i(Z,,/e_l ke-wt) -e,kt
E _(o,t) ) deS{w)E e e , (2.3)
s Jan g° e °
where A is the complex radar scattering amplitude of the point scatterer
(the radar cross section, o, is given by ¢ = l A IZ). Furthermore, we may
assume that the radar is a linear device such that the signal received within

the radar is given by

A Iw - . i(zJE“lkz-wt) -¢, kt
s(t) = doE * Rlw)S(w) e e
Jam 1° e °

where f’\'(w) is the polarization dependent gain of the system at the frequency,
f . (MNote that one could easily include polarization and frequency dependence
due to the scatterer by simply replacing A inside the integral by K(w), the
scattering dyadic, or scattering matrix; i.e., use the combination Eo ’ K(w)
in Eqs. 2.3} and (2.4). Furthermore, one could also include the effects of
a moevi., target by simply replacing w by w(l + %l) in the wt phase term,
where v is the velocity component of the scatterer toward the radar.)

The polarization and frequency dependence of ﬁ(w) will normally sepa-

rate such that we may assume
R(w) = €x R(w) (2.5)

where %R is a unit vector. The function R(w) will normally be the function
matched to S(w); i.e., R(w) will be the {ilter designed to maximize the re-

. . . . . . 22
ceived signal energy-to-noicse power ratio (for white noise) . Thus, we may

assume that

R(w) = ST(w) . (2. 6)

(Note that there may also be seme spectral weighting to reduce range sidelobes.)
Although it is difficult to mak: any general statements regarding the proper-
ties of S(w), i.e., the best wide-bandwidth signal to provide good pulse com-

pression with very low range sidelobes, one may consider the behavior of

2. See, for example, Skolnik, Introduction to Radar Systems, Ch. 9,

McGraw-Hill (1962).
4




the first frequency derivative of the phase of S{w) ; this function is called the

dispersive time cie:lay3 L If

S(w) = | s(w) | V(W)

then
= d§(w) :
T(f) = o ) (2.7)
and its general behavior is indicated in Fig. 1, where T is the transmitted

pulse length, W is the instantaneous frequency bandwidth, and fo is the

center frequency. (A constant delay has been neglected.)

A T(H) |3-4|-8670|

T/21
fo—lW/Z , N
1 o - f
)
fot w/2
-+ -T/2

Fig. i. General Dispersive Time Delay versus Frequency

A useful example is the linear fm signal, for which a good approximation to

T(f) is

~ o
T ptm (B —w—(-—fo——) . (2.8)

3. See, for example, E. N. Fowle, "The Design of FM Pulse Compressicn

Signals," IEEE Trans. on Inf. Theory, pp. 61-67 (1964).
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III. Dispersion and Attenuation Coefficients

Having introduced the concept of the dispersive time delay for a radar
receiver, we are now able to make a meaningful evaluation of the effects of
atmospneric dispersion. In particular, we may compare the dispersive time
delay introduced via propagation in the atmosphere with that of a pulse com-
pression receiver. Simultaneousiy, we may also estimate the attenuation in-
duced by the atmosphere.

Equation (2. 4) indicates the dispersion and attenuation due to a single
atmospheric constituent. Since these effects in the microwave region are
predominantly due to the resonances of water vapor and molecular oxygen,
we must generalize to include two constituents. Furthermocre, we must
account for the exponential atmosphere and, in fact, ailow for different
scale heights for each constituent. This might seem impossible at first
since the index of refraction is not a linear function of el (see Eq. (1.6)) ;
however, we may limit our interest to carrier frequencies which are many
'"resonant widths* lower than the lowest resonance (the water vapor resonance
at 1.35 cm). If we expand the complex dielectric constant as a function of

frequency about the radar center frequency, fo , then as a function of altitude,

h , above the earth's surface,

f-f f-f 2
- % o l °
e (£h) = e (£, n)+(—-{o—)'{13Ki(fo,h) +z(7—'0 );‘J?Kij(fo' Bly ., (3.1
and
f-fo 1 f-foz
ez(f’ h) - ez(fo’ h) +€T—) .Z ii(fo, h) +E(_'f_—') .2. gij(foa h) + o e o3 (3. 2)
o i o 1j

where K.(f .h) and
i‘"o

o

i(fo, h) are due te the i-th constituent. Similarly,
Ki'(fo’ h) and gij(fo’ h) are functions due i,j constituent mixing, such that
1 #j accounts for interactions between pairs of constituents. Higher-order
coefficients may he similarly intex.'preted as being due to higher-order inter -
actions. We shail assume that only the linear frequency dependence is im-
portant and neglect all higher-order terms. Furthermore, we shall use the

@2xpansion

(o))
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_ i o]
Ve (f) = e, (f ,h) [1 +W (-{;—)] . (3. 3)
. We may now assume that
-h/H
) e(f,,h) =1 4 8¢ (f )e e
-h/H0
ez(fo,h) = ez(fo)e )
«h/Hi
K,(f »h) = K({f Je ,
and -h/Hi
(£ h) =E (£f )e ; (3. 4)

where Ho is the average scale height for the atmosphere and the Hi » K

and gi are the scale height, dispersion coefficient,and attenuation coeffic;ent
for the i-th constituents contributing to the linear frequency dependence of
e(f) near f = fo .

Finally, the attenuation and dispersion phase terms in Eqs. {2.3) and

(2.4) are the result of evaluatinj the phase-path integral

£ .
_ i
L-ZJ; dx [We, +5¢,1 . (3.5)
If we now include the dependence of sl and €, on altitude, 2nd assume a
flat earth geometry in the vicinity of the radar (see Fig. 2), we use h = xsin 6
to find
x 8in 8 X 8in 0

t - £-f T
L(t,6) =2 ax {[1+%A e\(f )e Ho ][1+%(-f-£’);xi(fo)e i
(o] O %

x sin © _xs8in§
i ) i;[o f'fo —Hl_
t= [ez(f.o)e + (—Io—)ijgi(fo)e 1} . (3. 6)




I3~4I-8669l

Fig. 2. Radar Cocrdinate System

It should be noted that L({, 8) is not valid for 6 = 0 due to the flat earth
approximation. In fact, we must restrict 6 such that (RE is the radius of
L the earthj

e > Ho/RE = 1/10 degree.

Equation (2. 4) is then generalized to yield

) S - AE, - & ‘fwdwR(w)S(w)ei[kLu' 9) - wt] (3.7)
S £ e
0 In order to obtain simple answers, let us specify two extreme cases of obser-

vation: {l) Vertical observation with 1 >>Ho ; (2) Horizontal observation

with £ <<RE . For these two cases we obtain (neglecting terms of order
Ael (fo) Ki (fo))

H f-f
~ 1 o Oy «

ff
+iH le(f ) + F{)ﬁ)fgi(fomi/ﬂoj : (3.8)

8
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and

f-f
a - 1 o)
Ly ™ & (1 +-2-Ael(fo)] 4 ﬁ;‘”fxi (£,)

f-f
+it Le,li ) + (-f;-?) izgi(fo)l . (3.9)

Using Eqs. (3. 8) and (3.9) we may now define the vertical and horizontal dis-

persive delay and attenuation factors, respectively, as

AT (D) =L /c -2, (3.10)
AT (f) = Lg/c - 3;.‘ , (3.11)
ff H,
- kHo[ez(fo) )T g §(£) ]
AdD  =e c 0 , (3.12)
and f-fo
-t Leylf) + (2 g,(1) ]
Agl)  =e ° ) (3.13)

Note that the dispersive delay times contain an average correction to the usual

gross range approximation; e.g., in AT__ it is (-i—) Ael(fo)

H

IV. Evaluation of the Dispersion and Attenuation Coefficients of

Water Vapor and Moleculer Oxygen

In order to calculate the dispersive time delay and attenuation factors,
we must now evaluate the set of constants introduced in the preceding dis-
cussion. The quantum mechanical theory of molecular electric and magnetic
resonance phenomena is the basis for theoretical evaluations ard much de-
tailed work has been reported in the literature. Analysis of a single resonance

yields the results, valid near the i-th rsesona.nce1

’
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ERE A

Aifi[ (£ -1)
e,.(f) =1 +— 7] , (4. 1) .
li VI (i-£,)
and
fi Afi
€,.(f) = [ i (4. 2) :
AV (£-£.)°
i i
where Ai is a dimensionless constant, fi is the frequency at the center of
the i-th resonance, and Af]. is the line-breadth constant. We see that
[el(f) - 11 achieves the maximum and minimum values of % Aifi/4Afi at
f= fi ¥ Afi , respectively; thus, the maximum change in el(f) occurs in
this frequency interval and has the value Ae L A,f,/ZAf_, Figure 3 (taken
3 11 1
from Ref. 1) indicates the behavior of Gli(f) and the attenuation in db/km
(see Eq. 4.6) near the resonance,
G.50 4+ €
2 £
£
3
g S %
hat '— sutas
? 2 g x
3 HE
w
-
I «
x
0 <
Fig. 3. Dependence of Resonant Absorption and Refracticn
on Frequency in the Vicinity of Resonance
10
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Experimental verification of Eq. (4. 1) has always been a difficult, if not
impossible, task. For a narrow-bandwidth system one must be able to perform
precise, unambiguous phase measurements on a scattered wave -- and one
must also theoretically subtract out all other possible phase deviations. Thus,
one usually finds in the literature experimental verifications of Eq. (4. 2) by
meaas of the i-th attenuation factor. In this way the two parameters, Ai and
Afi , may be evaluated and one may then assume that they are the appropriate
parameters for Eq. (4.1). This is, in fact, what we shall assume in order to
evaluate the dispersion censtant, Ki .

Using Eqs. (4. 1) and (4. 2) for a single resonance, where Ai and Afi
have been evaluated by comparison with experiment, we may evaluate Ki(fo)
and gi(fo) by expanding el(f) and ez(f) about f = fo and making the
appropriate comparisons with Eqs. (3. 1) and (3. 2) combined with Eq. (3. 4).

Following this procedure we find (where we have assumed that (fi -f6)>>Afi)

Aff
Kf ) =—— (4.3)
2(f,-£ )

and
Aif.lA f.1
glf,) =—3 . (4. 4)
(f.-f)
i o
We have discussed the case of a single molecular resonance which im-
plies Eqs. (4. 1) and (4. 2); in reality we must deal with multiple resonances.
In that case it is not true that we may simply compute ¢(f) by adding individual
contributions since there will certainly be interactions. In particular, collision
broadening may occur. We shall assume that the Ai and Afi are not appre-
ciably affected if the resonances are sufficiently well separated. Thus, we

shall assume that

Mgy b1,
e, (f) =% 1 . (4. 5)
N T
1 1
1
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Using Eq. (4.5) we may compute the attenuation in db/km to find

me,(f)
Adb/km(f) e 107 log e, (4. 6)

where A 1is measured in cm. Figures 4 and 5, taken from Ref. 1, indicate
a combination of experimental and theoretical results obtained for the first
oxygen and water vapor resonances.

Referring to Eqs. (4. 3) and (4. 4), it is obvious that the resonances
nearest to the radar center frequency are important. In principle, we

evaluate A (f) at all fi . Equation (4. 6) then gives a set of coupled

db/km
linear equations in the Ai . We shall here assume that the resonances are
sufficiently separated that the overlap of the tails may be neglected as a f{irst
approximation. Thus, we simply measure each Ai separately with the
relation

xiZ(Afi/c)

Ay Aty (4.7)
m 10 log e

where A is in cm and (Afi/c) is in c.m"l. Note that the attenuation due to
water vapor depends linearly on the density, p , which may vary by a large
amount. For temperate latitudes (ZOC'C) in the summer, the average density
is about 7.5 gm/m3. On the other hand, at saturation at ZOOC, sea level,

p = 17. grn/m3, and under tropical conditions the content can be even higher.
We shall evaluate Ai/p for the water vapor resonances.

Since the second oxygen attenuation is small, and it occurs at a smaller
wavelength with a much narrower width, Eq. (4.7) indicates that Ai for the
second resonance is very small compared to that for the first resonance.
Furthermore, since the dispersive effects at fo are reduced by Elf;_z ,
we may calculate a first approximation to the dispersion by using oniy the
first of the water vapor resonances. We may also note that this approxima-
tion will indicate a minimum estimate of the dispersion since all Ki for the
higher resonances are positive if fo is less than all the fi . The results

obtained are

12
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AO =1.1x10.7 at A\ =.5cm
2

and

=2.9x10-9 at \

AH O/P 1.35cm . (4.8)

2
Finally, we may use the results stated in Eq. (4. 8) in conjunction with
Eq. (4. 3) to calculate the dispersion constants at the frequency fo . With
these constants we may then evaluate tae dispersive time delay of Eqs. (3. 10)

or (3.11). As an example, we evaluate ATH to find

( \
£-£ 1 1x1077(6x 100 ) 2.9x10-9p(2.2x1010f0)>

1
= () +
o 79 2(6x1070-5 )" 2(2.2x10° - £ )°

ATH (4.9)

/
In order to compare this result with the dispersion characteristic of a linear
fm pulse compressior receiver (see Eq. (2. 8)), we shall assume the example
f, =10Gc, W=1Gc, T=.lusec, p =7.ng/m3;thus

AT

H. -8,4.,, W  _ -7
Lfm o

where 1 is in km'. Even if { = RE > 6000 km , the effect is negligible for a
ten percent bandwidth at X-band. In fact, if T is fixed at .l uegec, W = fo/IO ,
and £ = 10 km, the average dispersicn of a wide-bandwidth signal by the
atmosphere is only ten percent of the receiver dispersion when one uses a
carrier frequency which is about 100 Mc iower than the first water vapor

resonance at 22 Ge.

SLB:cm
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Fig. 4. Atmospheric Attenuation by Oxygen

as a Function of Wavelength

The measurements, when made on other than 20% OZ’ are reduced
to '"air equivalent values' by assuming that at given total pressure the ab-

sorption is proportional to the partial pressure of oxygen.

14




]

005

o J BRI

0.04}—
0.03

0.02

0.0!

(33/p) X ATTENUATION IN db/km

Fig. 5. Theoretical and Experimental Results on Attenuation by

Water Vapor in the l1-cm Region at 2 Temperature of 45° C.

The lower curve gives theoretical values based on Af/c = 0. 087 cm.l.

The upper curve represents measurements made at the Columbia Radiation

Laboratory. The units used are: X\ in cm, and p in grams per cubic meter.




